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SUMMARY

In this paper an original variant of the FETI domain decomposition method is introduced for heterogeneous
media. This method uses new absorbing interface conditions in place of the Neumann interface conditions
defined in the classical FETI method. The optimal convergence properties of the classical FETI method and
of its variant are first demonstrated, both in the case of homogeneous and heterogeneous media. Secondly,
novel and efficient absorbing interface conditions, which avoid rigid body motions, are investigated
and analysed. Numerical experiments illustrate the dependence of the proposed method upon several
parameters, and confirm the robustness and efficiency of this method when equipped with such absorbing
interface conditions. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

These last ten years, several research have been carried out on non-overlapping domain
decomposition methods [1–3]. In these methods, the initial domain is partitioned into small non-
overlapping sub-domains. The continuity is enforced by using some primal or dual unknowns
defined on the interface between the sub-domains. A very powerful and efficient member of this
class of domain decomposition methods is the finite element tearing and interconnecting (FETI)
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method [4]. In its original version, a Neumann problem is solved on each sub-domain. Later on,
in a variant of this method [4], an additional Dirichlet problem is solved exactly on each sub-
domain. Unfortunately, for the Laplace equation, when dealing with arbitrary mesh partitioning,
it may appear that one or more sub-domains are not attached to an external boundary condition.
This leads to so-called floating sub-domains, and to non-well-posed Neumann sub-problems. An
additional procedure for the detection of the rigid body motions is thus mandatory to compute
the solution inside these floating sub-domains [5]. Incidently, this extra work for the detection
can be cast in a coarse grid preconditioner that allows to give the scalability of the method [4].
For the Helmholtz equation, when using the FETI method, local resonance frequencies may
appear in some sub-domains. A remedy to this problem, consists of defining a relative fine coarse
grid, similar to the case of floating sub-domains for the Laplace equation. Another solution con-
sists of changing the Neumann interface conditions by Robin interface conditions, with complex
coefficients, as first introduced in Reference [6]. Using complex coefficients shifts the eigen-
values of the partial differential operator to the complex plane, and avoids any local resonance
frequencies [7–11].

In this paper an original variant of the FETI domain decomposition method is introduced for
heterogeneous media. This method uses new real absorbing interface conditions in place of the
Neumann interface conditions defined in the classical FETI method. The optimal convergence
properties of the classical FETI method and of its variant are then demonstrated, both in the case
of homogeneous and heterogeneous media. The design of novel and efficient absorbing interface
conditions is then investigated, derived and analysed.

The structure of this paper is the following. Section 2 presents an analysis in the Fourier
space of some interface conditions. Dirichlet interface conditions are first introduced in
Section 2.1 in the context of the Schur method. Mixed type interface conditions are introduced in
Section 2.2 in the context of the FETI method. Section 2.3 presents the optimal convergence
properties of the FETI method with Neumann and with mixed type interface conditions, both
in the case of homogeneous and heterogeneous media. In Section 3, a discrete analysis de-
fines the optimal choice of the discrete absorbing interface conditions. Section 4 discusses the
design of suitable real absorbing interface conditions. Section 5 shows some numerical experi-
ments and illustrates the convergence of the original variant of the FETI method equipped with
these real absorbing interface conditions. Finally, in Section 6 the conclusion of this paper is
presented.

2. FOURIER ANALYSIS OF INTERFACE CONDITIONS

In this section, the problem −∇(�∇u) = f (x, y), x, y ∈ � is considered in the domain �= R2 with
homogeneous Dirichlet boundary conditions at infinity, i.e. limr→∞ u = 0 where r =√x2 + y2.
The domain � is partitioned into two non-overlapping sub-domains �(1) = (−∞, 0] × R and
�(2) =[0,∞) × R, with an interface �= {0} × R. For the sake of simplicity the coefficient � is
assumed to be constant per sub-domain.

2.1. Case of Dirichlet interface conditions

The Schur method is first considered, see, e.g. Reference [12]. This method consists in assuming
that the solution is known on the interface, i.e. that u(1)(0, y) = u(2)(0, y)= � with � as a known
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OPTIMAL CONVERGENCE PROPERTIES OF THE FETI METHOD 3

value. The solution of the subproblems with Dirichlet interface conditions

−∇(�(1)∇u(1)) = f (1), x<0, y ∈ R (1)

u(1) = �, x = 0, y ∈ R (2)

−∇(�(2)∇u(2)) = f (2), x>0, y ∈ R (3)

u(2) = �, x = 0, y ∈ R (4)

gives u(1)(x, y)= u(1)(x, y; �, f (1)) and u(2)(x, y)= u(2)(x, y; �, f (2)). The continuity condition

�(1)�xu(1) = �(2)�xu(2), x = 0, y ∈ R (5)

must be imposed in order to have the equivalence of the subproblems (1)–(4) with the global
problem. After substitution of u(1)(x, y; �, f (1)) and u(2)(x, y; �, f (2)) in the continuity conditions
and taking into account the linearity, a condensed interface system upon the variable � is obtained.
The solution of this system gives � and thus the value u(1), respectively, u(2) can be obtained from
the solution of (1)–(2), respectively, (3)–(4).

In order to analyse the interface conditions, it suffices to consider by linearity the case f (x, y)= 0.
The Fourier transform is used in the y direction defined for a function g by

ĝ(x, k) =
∫ +∞

−∞
e−ikyg(x, y) dy

and applied to the systems of Equations (1)–(4). Since the coefficient � is assumed to be constant
per sub-domain, this leads to

−�(1)�xx û(1) + �(1)k2û(1) = 0, x<0, k ∈ R (6)

û(1) = �̂, x = 0, k ∈ R (7)

−�(2)�xx û(2) + �(2)k2û(2) = 0, x>0, k ∈ R (8)

û(2) = �̂, x = 0, k ∈ R (9)

with the continuity constraint

�(1)�x û(1) = �(2)�x û(2), x = 0, y ∈ R (10)

The general solution of these ordinary differential equations is

û(s) =C e|k|x + B e−|k|x , s = 1, 2

Since the Dirichlet boundary condition excludes growing solutions at infinity the following solutions
are obtained:

û(1)(x, k) =C e|k|x , û(2)(x, k) = B e−|k|x (11)
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After substitution of (11) in the interface conditions (7), (9) and evaluation at x = 0, this leads to:
C = �̂ and B = �̂. Using the continuity constraint (10) and the fact that

�x û(1)(x, k) = |k|û(1)(x, k), �x û(2)(x, k) = −|k|û(2)(x, k)

leads after substitution to a linear system upon the unknown �̂

(�(1)|k| + �(2)|k|)�̂= 0

which can be written in the form S�̂ = 0 with S= (S(1) + S(2)) where S(1) = �(1)|k| and
S(2) = �(2)|k|. This condensed linear system on the interface has one and only one solution �̂
equal to zero if and only if S is invertible.

2.2. Case of absorbing interface conditions

The FETI method with absorbing interface conditions is now considered [9]. If A denotes an
appropriate linear operator and if � is assumed to be given, the solution of the subproblems with
absorbing interface conditions

−∇(�(1)∇u(1)) = f (1), x<0, y ∈ R (12)

(�(1)�x + A)u(1) = �, x = 0, y ∈ R (13)

−∇(�(2)∇u(2)) = f (2), x>0, y ∈ R (14)

(�(2)�x + A)u(2) = �, x = 0, y ∈ R (15)

gives u(1)(x, y)= ũ(1)(x, y; �, f (1)) and u(2)(x, y)= ũ(2)(x, y; �, f (2)). The continuity condition

u(1) = u(2), x = 0, y ∈ R

must be imposed in order to have the equivalence of the sub-problems with the global problem.
After substitution and linearity a condensed interface system upon the variable � is obtained.
The solution to this system gives the correct value of � and thus the values u(1) and u(2) can be
obtained. Note that for the classical FETI method A is equal to zero, and without the detection of
the rigid body motions the method does not ensure well-posed subproblems for general mesh
partitioning [5].

Following the same lines as in the previous section, after applying the Fourier transform to the
systems of Equations (12)–(15), leads to

−�(1)�xx û(1) + �(1)k2û(1) = 0, x<0, k ∈ R (16)

(�(1)�x + �(k))u(1) = �̂, x = 0, k ∈ R (17)

−�(2)�xx û(2) + �(2)k2û(2) = 0, x>0, k ∈ R (18)

(�(2)�x + �(k))u(2) = �̂, x = 0, k ∈ R (19)
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with the continuity constraint

û(1) = û(2), x = 0, y ∈ R (20)

where �(k) denotes the Fourier symbol of the operator A. Taking into account the Dirichlet
boundary conditions at infinity, the solutions are:

û(1)(x, k) =C e|k|x , û(2)(x, k) = B e−|k|x (21)

Using these interface conditions (21) in Equation (17), (19) and after evaluating at x = 0
leads to

(�(1)|k| + �(k))C = �̂, (−�(2)|k| + �(k))B = �̂

The value of C and B can be obtained

C = �̂

�(1)|k| + �(k)
and B = �̂

−�(2)|k| + �(k)

and this gives by induction

û(1)(x, k) = �̂

�(1)|k| + �(k)
e|k|x and û(2)(x, k) = �̂

−�(2)|k| + �(k)
e−|k|x

Using the continuity constraint (20) leads after substitution to a linear system upon the unknown �̂(
1

�(1)|k| + �(k)
− 1

−�(2)|k| + �(k)

)
�̂ = 0

which can be written as: D�̂ = 0 with D = (D(1) + D(2)) where

D(1) = 1

�(1)|k| + �(k)
and D(2) = −1

−�(2)|k| + �(k)

This condensed linear system on the interface has one and only one solution �̂ equal to zero if
and only if D is invertible.

2.3. Optimal interface conditions in the Fourier space

In the previous analysis the condensed linear system on the interface derived from the Schur method
with Dirichlet interface conditions and from the FETI method with absorbing interface conditions,
have been derived in the Fourier transformed space. When a right-hand side is considered, the
solution of this condensed linear system gives �̂ and the solution û(s) in each sub-domain can then
be obtained. It can be shown [4, 12] that the spectrum of the eigenvalues of the operator D of the
classical FETI method is strongly different from the spectrum of the eigenvalues of the operator S
of the Schur method. As a consequence, the classical FETI method is more efficient than the Schur
method and is commonly used. In order to improve the efficiency of the classical FETI method, an
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additional Dirichlet problem can be solved in each sub-domain [4]. This preconditioning technique
consists in using the Schur method as a left preconditioner of the classical FETI method. In the
case of the FETI method with absorbing interface conditions, an extension of this preconditioning
technique can be obtained and leads in the Fourier transformed space to the new theorem.

Theorem 2.1 (Heterogeneous case)
In the case of two sub-domains splitting, and with the choice �(k) = (�(2)|k| − �(1)|k|)/2, the
FETI method with absorbing interface conditions, preconditioned by the Dirichlet preconditioner
converges in one iteration at most.

Proof
The FETI method with absorbing interface conditions preconditioned by the Dirichlet precondi-
tioner leads to an operator of the condensed linear system on the interface equal to SD, where
S and D have been derived in the previous sections. Choosing �(k) as defined in the previous
theorem, leads to the following expression of D and S:

D=
(

1

�(1)|k| + �(k)
− 1

−�(2)|k| + �(k)

)
= 4

(�(1) + �(2))|k|
S= (�(1) + �(2))|k| = 4D−1

and so the operator of the preconditioned condensed linear system reduces to identity. �

In the case of an homogeneous media �, i.e. when � is assumed to be constant, the problem
reduces to −�u = f . The solution of this problem with the Schur method and with the FETI
method, followed by a Fourier analysis leads to the corollary already introduced in Reference [4].
Corollary 2.1 (Homogeneous case)
In the case of two sub-domains splitting, and with the choice �(k) = 0, the classical FETI method
preconditioned by the Dirichlet preconditioner converges in one iteration at most.

Proof
Like in Theorem 2.1, a choice of �(k) equal to zero leads to the following expression of the
operators D and S

D=
(

1

�|k| − 1

−�|k|
)

= 2

�|k| and S= 2�|k| = 2D−1

and so far the operator SD of the preconditioned condensed linear system reduces to
identity. �

3. DISCRETE ANALYSIS OF INTERFACE CONDITIONS

In this section, the domain � ∈ Rd , d = 1, 2, 3, is split into two non-overlapping sub-domains �(1)

and �(2) with an interface �. Considering that subscripts i and p denotes the degrees of freedom
located inside sub-domain �(s) and on the interface � then the contribution of sub-domain �(s),
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s = 1, 2 to the sub-domain matrix and the right-hand side can be written as

K (s) =
⎛
⎝K (s)

i i K (s)
ip

K (s)
pi K (s)

pp

⎞
⎠ , b(s) =

(
b(s)
i

b(s)
p

)

In the following it is assumed that matrix K (s)
i i is non-singular for s = 1, 2. The global problem is

a block system obtained by assembling local contribution of each sub-domain⎛
⎜⎜⎜⎝
K (1)
i i 0 K (1)

ip

0 K (2)
i i K (2)

ip

K (1)
pi K (2)

pi K pp

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝
x (1)
i

x (2)
i

x p

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
b(1)
i

b(2)
i

bp

⎞
⎟⎟⎠ (22)

The matrices K (1)
pp and K (2)

pp represent the interaction matrices between the nodes on the interface
obtained by integration on �(1) and on �(2). Block Kpp is the sum of these two blocks. In the

same way the term bp = b(1)
p + b(2)

p is obtained by local integration of the right-hand side over
each sub-domain and summation on the interface. It can be shown that the global problem (22) is
equivalent to the following coupled subproblems:

⎛
⎝K (1)

i i K (1)
ip

K (1)
pi K (1)

pp + App

⎞
⎠
(
x (1)
i

x (1)
p

)
=
(

b(1)
i

b(1)
p + �

)
(23)

⎛
⎝K (2)

i i K (2)
ip

K (2)
pi K (2)

pp − App

⎞
⎠
(
x (2)
i

x (2)
p

)
=
(

b(2)
i

b(2)
p − �

)
(24)

with the coupling equations

x (1)
p = x (2)

p (25)

where � denotes an additional unknown defined on the interface.
As detailed in Section 4, the matrix App defined Equations (23) and (24) corresponds to the

discretization of the continuous operator A defined Equations (13) and (15).

3.1. Case of discrete Dirichlet interface conditions

Similar to the continuous analysis, one way to solve the subproblems (23)–(25), is to assume that
the continuity condition x (1)

p = x (2)
p = xp is satisfied, with xp being an arbitrary known value. After

elimination of x (1)
i and x (2)

i in favour of xp inside (23) and (24) the following is obtained:

[S(1) + App]xp = c(1)
p + �, [S(2) − App]xp = c(2)

p − �

where S(s) = K (s)
pp − K (s)

pi [K (s)
i i ]−1

K (s)
ip is the Schur complement matrix and c(s)

p = b(s)
p − K (s)

pi

[K (s)
i i ]−1

b(s)
i is the condensed right-hand side in sub-domain �(s). After addition of the two previous
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8 Y. MADAY AND F. MAGOULÈS

equations the following linear system is obtained:

(S(1) + S(2))xp = c(1)
p + c(2)

p

The solution of this condensed linear system on the interface leads to the unique correct value of
xp, and the first line of (23) and (24)

x (1)
i = [K (1)

i i ]−1
(b(1)

i − K (1)
ip x (1)

p ), x (2)
i = [K (2)

i i ]−1
(b(2)

i − K (2)
ip x (2)

p )

gives, respectively, the values of x (1)
i and x (2)

i .

3.2. Case of discrete absorbing interface conditions

Similar to the continuous analysis, the FETI method with Neumann interface conditions, i.e. with
App = 0, consists of supposing that � is a known value. With the choice App = 0 the subproblems
(23), (24) may not be well-posed. In this case, the FETI method with absorbing interface conditions,
i.e. with App �= 0 should be considered. The matrix App can be chosen in such a way that the

singularities disappear in the local subproblems. A direct relation between x (s)
p , for s = 1, 2 and �

can be obtained from (23) and (24) and leads to

x (1)
p =[S(1) + App]−1(c(1)

p + �), x (2)
p = [S(2) − App]−1(c(2)

p − �)

Then substitution in (25) gives

([S(1) + App]−1 + [S(2) − App]−1)� =−[S(1) + App]−1c(1)
p + [S(2) − App]−1c(2)

p

The solution of this system gives the only convenient value of � and then x (1)
i , x (1)

p , x (2)
i and x (2)

p
can be obtained. Using such absorbing interface conditions can be seen as a nice alternative to the
detection of the rigid body motions and to the use of pseudo-inverses in the classical FETI method
[5, 4].

3.3. Optimal interface conditions in the discrete space

Previously, the Schur method, the classical FETI method and its variant have been presented with
a discrete analysis. A theorem is now introduced in the discrete space:

Theorem 3.1
In the case of two sub-domains splitting, and with the choice of the matrix App = 1

2 (S
(2)−S(1)) the

FETI method with absorbing interface conditions preconditioned by the Dirichlet preconditioner
converges in one iteration at most.

Proof
In the particular case where S(1) = S(2), App is equal to zero and the theorem reduces to the
theorem introduced by Farhat et al. [4]. When S(1) �= S(2), it has been shown in the previous
sections that the FETI method with absorbing interface conditions leads to the linear system

([S(1) + App]−1 + [S(2) − App]−1)� =−[S(1) + App]−1c(1)
p + [S(2) − App]−1c(2)

p

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:1–14
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Choosing the matrix App equal to: App = 1
2 (S

(2) − S(1)) transforms the left-hand side of this linear
system to

([S(1) + App]−1 + [S(2) − App]−1)� = ([S(1) + 1
2 (S

(2) − S(1))]−1 + [S(2) − 1
2 (S

(2) − S(1))]−1)�

= (4[S(1) + S(2)]−1)�

and the right-hand side becomes

−[S(1) + App]−1c(1)
p + [S(2) − App]−1c(2)

p

=−[S(1) + 1
2 (S

(2) − S(1))]−1c(1)
p + [S(2) − 1

2 (S
(2) − S(1))]−1c(2)

p

= (2[S(1) + S(2)]−1)(−c(1)
p + c(2)

p )

As already explained, preconditioning the FETI method with the Dirichlet preconditioner corre-
spond to a left multiplication of the linear system of the FETI method by the matrix [S(1) + S(2)].
So far, the preconditioned system reduces to identity, which concludes the proof. �

4. DESIGN OF REAL ABSORBING INTERFACE CONDITIONS

4.1. Preliminaries

For the Helmholtz equation with a wave number�, i.e. (−�−�2)u = f , a general mesh partitioning
may introduce some resonance frequencies in some sub-domains. In order to avoid such resonance
frequencies Farhat et al. [9] have proposed to define the operator A equal to i�, where i= √−1
denotes the imaginary complex number. Using such a complex operator shifts the eigenvalues of
the �-operator to the complex plane, and avoids any local resonance frequencies [6–8, 10, 13–16].
An additional benefit of these interface conditions consists of the local properties of the operators
as investigated for localized non-reflecting absorbing conditions, see Reference [17] for instance.
Using such a complex operator was natural for exterior Helmholtz problems since the radiation
condition at infinity involves complex coefficients. In this paper, the equation −∇(�∇u) = f , in
heterogeneous media of density � is considered, and the boundary conditions are real. So far
the operator A is assumed to be real. This is the key point of the following analysis, since not
considering complex operator completely change the properties of the condensed interface system.

At this point it is important to mention the previous work of Farhat et al. [5] for the equation of
linear elasticity. The proposed idea was to compute in the discrete space directly the matrix App
associated with the operator A. For this purpose, the matrix of the subproblem was condensed on
one point of the interface, and after multiplication by a coefficient 0<�<1 was considered as the
matrix App. Unfortunately, this approach involves non-local interface operations. In addition this
approach deteriorates the conditioning number of the local subproblems which slows down the
convergence of the FETI method. In this paper, the matrix App is obtained from the discretization
of an operatorA defined as a partial differential operator acting on the interface. As a consequence
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only local interface operations are performed. This partial differential operator is determined after
a Fourier analysis of the FETI method with absorbing interface conditions.

4.2. Polynomial approximations

In the previous section the optimal absorbing interface conditions used with a Dirichlet precon-
ditioner have been presented. Such optimal absorbing interface conditions involve in the Fourier
transformed space the operator (�(2)|k| − �(1)|k|)/2. This operator corresponds to a non-local
operator in the physical space. This means that in practice, using such optimal absorbing interface
conditions will imply a high computational cost.

In this section two choices for the operator �(k) are investigated and analysed. The proposed
choices are based on different approximations of the operator �|k| which corresponds to a non-local
operator in the physical space, by polynomials �(k) which represent differential operators in the
physical space and are thus local. To avoid an increase in the bandwidth of the local subproblems,
polynomials of degree at most two are considered, which leads to an interface operator A which
is at most a second-order partial differential operator acting along the interface. By symmetry of
the equation there is no interest in a first-order term. Therefore the operator �|k| is approximated
either by a polynomial of degree zero, i.e. a constant, or by a polynomial of degree two. The
first approximation leads to zeroth-order interface condition and the second approximation leads
to second-order interface condition.

In the Fourier analysis, the inverse of the quantity �|k| ± �(k) appears in the expression of the
linear system condensed on the interface. In order to ensure the existence and uniqueness of the
solution of this linear system, the quantity �|k| ± �(k) must not vanish, for all k. However, in
practice only the frequencies carried out by the numerical grid are of interest.

The approximation of the operator �|k| by a polynomial �(k) of degree zero, i.e. a constant is
first considered. Since the graph of �|k| must not intersect the graph of �(k) in the frequency range
[−kmax, +kmax], any value of �>max(�(1), �(2))kmax is convenient. In this paper, the simplest
choice � = max(�(1), �(2))kmax + � is considered, where � denotes a very small number linked
with the precision of the computer. This choice of �(k) = � in the transformed Fourier space leads
to the operator Au = �u in the physical space. The absorbing interface condition defined on the
interface of the sub-domains takes the form �(�u/�n) ± �u = ± � where n denotes the unitary
normal derivative vector along the interface.

The approximation of the operator �|k| by a polynomial �(k) of degree two is now considered.
Since the graph of �|k| must not intersect the graph of �(k) in the frequency range [−kmax, +kmax],
any expression �(k) = � + �k2, with �>max(�(1), �(2))kmax and with �>0 is convenient. This
choice of �(k) = � + �k2 in the transformed Fourier space leads to the operator Au = �u+��2		u
in the physical space. The absorbing interface condition defined on the interface of the sub-
domains takes the form �(�u/�n) ± (�u +�(�2u/�	2))= ± � where n denotes the unitary normal
derivative vector along the interface and where 	 denotes the tangent direction at the interface. A
finer determination of the coefficients � and � can be obtained in the particular two-dimensional
case with an uniform triangular mesh of mesh size h. The coefficients of the elementary volume
stiffness matrix K e, of the elementary surface mass matrix Me

� and of the elementary surface
stiffness matrix K e

� are, respectively, in order O(1), O(h) and O(h−1). So far are the coefficients
of the matrix K e

pp, which denotes the restriction to a edge of the elementary stiffness matrix. In
order to keep the homogeneity of the dimension, the elementary matrix Ae

pp = �Me
� +�K e

�, added
to the elementary matrix K e

pp, should be in O(1). This is realized when the coefficients � and �
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are chosen, respectively, in order O(h−1) and in order O(h). In this paper, the simplest choice
of � and � are considered, i.e. � = max(�(1), �(2))h−1 and � = max(�(1), �(2))h. The reader can
check that with this choice the operator �(k) = �+�k2 does not intersect the graph of the operator
�|k|, and as a consequence the subproblems are well posed in each sub-domain.

Although a simple choice for the coefficients � and � in the localized absorbing interface
condition is given in the case of a structured mesh with a regular interface, the generalization of
this choice to unstructured non-uniform triangulations does not lead to particular difficulties. In
this case, an average mesh size h is evaluated, and the previous choice of the coefficients � and �
is applied on each edge of the interface.

Remark 4.1
The discrete interface conditions proposed in this paper are local. The idea is to use polynomial
approximations for the Fourier transform of the linear operator A, which translates to localized
differential (tangential to the interface) operators in the physical space. After discretization, the
matrix App has the same bandwidth than the local matrix.

5. NUMERICAL EXPERIMENTS

In order to illustrate the domain decomposition method presented in this paper, four experiments
are now presented. The problem considered is

−∇(�∇u) = 0, ∀(x, y)∈ ]0, 1[×]0, 1[
u(x, y) = u0(x, y), x = 0, y ∈ [0, 1]

�xu(x, y) = �xu0(x, y), x = 1, y ∈ [0, 1]
�yu(x, y) = �yu0(x, y), x ∈ [0, 1], y = 0, 1

where u0(x, y)= 16((2x−1)2−(2y−1)2). Unstructured non-uniform triangulations are generated
from unstructured uniform triangulations by shifting the coordinates of the nodes with a random
value. An example is illustrated in Figure 1. The global domain is first split into two rectangular
shaped sub-domains �(1) =[0, 0.5] × [0, 1] and �(2) = [0.5, 1] × [0, 1] as shown Figure 1. In
this configuration external Dirichlet boundary conditions are only defined on the boundary of the
sub-domain �(1). As a consequence the matrix in the sub-domain �(2) is singular, and the FETI
method with Neumann interface conditions cannot converge without an additional procedure of
the detection of the rigid body motions. The number of iterations required by the different methods
are reported in Table I for different density assumed constant per sub-domain. It can be noticed
that the FETI method with second-order absorbing interface conditions converges faster than the
other methods. The respective performance of the methods can be classified as follows: first, the
FETI method with second-order absorbing interface conditions, second the FETI method with
Neumann interface conditions, third the Schur method with Dirichlet interface conditions, fourth
the FETI method with zeroth-order conditions. These respective performance will be confirmed
in Tables I and II. Table I clearly illustrates the robustness of the FETI method with second-
order absorbing interface conditions and its supremacy over the other methods, specially when the
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Figure 1. Example of a non-uniform triangulation (left) and example of a mesh
partitioning into two sub-domains (right).

Table I. Number of iterations upon the density assumed constant per sub-domain (Ns = 2, h = 1/100).

Schur FETI∗ FETI FETI
Density ratio with Dirichlet with Neumann with zeroth-order with second-order
�(2)/�(1) interface conditions interface conditions interface conditions interface conditions

100 35 16 71 16
101 36 23 71 19
102 39 26 72 21
103 40 30 74 22

∗An additional procedure for the detection of the rigid body motions has been incorporated.

Table II. Number of iterations for different mesh size parameter (Ns = 2, �(1) = �(2) = 1).

Schur FETI∗ FETI FETI
Mesh size with Dirichlet with Neumann with zeroth-order with second-order
h interface conditions interface conditions interface conditions interface conditions

1/50 24 12 34 13
1/100 35 16 71 16
1/200 51 21 147 23
1/400 73 28 262 33

∗An additional procedure for the detection of the rigid body motions has been incorporated.

heterogeneity between the two sub-domains increases. This method even bits the FETI method
with Neumann interface conditions equipped with the procedure of the detection of the rigid
body motions! The dependency upon the mesh size parameter is now analysed and the results are
reported Table II in the case of homogeneous media. Table III presents the number of iterations
in the case of heterogeneous media, when each sub-domain is composed of an homogeneous
media of constant density. Different configurations are finally considered. For each configuration,
each sub-domain is composed only with one material. According to this hypothesis, the global
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Table III. Number of iterations for different mesh size parameter (Ns = 2, �(1) = 1, �(2) = 102).

Schur FETI∗ FETI FETI
Mesh size with Dirichlet with Neumann with zeroth-order with second-order
h interface conditions interface conditions interface conditions interface conditions

1/50 25 18 36 16
1/100 39 26 72 21
1/200 57 36 147 29
1/400 81 55 272 44

∗An additional procedure for the detection of the rigid body motions has been incorporated.

Table IV. Number of iterations for different configuration and different number of sub-domains
(h = 1/100, �(2p−1) = 1, �(2p) = 102, p= 1, 2, 3, 4).

Schur FETI∗ FETI FETI
Sub-domains with Dirichlet with Neumann with zeroth-order with second-order
Ns interface conditions interface conditions interface conditions interface conditions

2 47 25 120 24
4 84 54 302 47
8 127 87 565 73
16 212 149 1101 120

∗An additional procedure for the detection of the rigid body motions has been incorporated.

domain is, respectively, split into two (respectively, four, eight and sixteen) sub-domains for
the first (respectively, the second, the third, and the fourth) configuration. The results reported in
Table IV illustrates the strong robustness of the FETI method with second-order interface conditions
and its supremacy over the FETI method with Neumann interface conditions equipped with the
procedure of the detection of the rigid body motions.

Remark 5.1
As analysed in Reference [4], one iteration of the Schur method requires similar computational time
than one iteration of the FETI method with Neumann interface conditions. In addition, because
the bandwidth of the matrix App is the same than the bandwidth of the local matrix, one iteration
of the FETI method with Neumann interface conditions, or with zero-order interface conditions or
with second-order interface conditions requires the same computational time. For these reasons,
the numerical experiments only use the number of iterations to illustrate the supremacy of the
FETI method with the second-order interface conditions.

It should be noticed that despite the proposed absorbing interface conditions do not involve
optimization procedures (as in our previous work for the Schwarz method [18]), these interface
conditions lead to extraordinary performances.

6. CONCLUSION

In this paper an original variant of the FETI method with absorbing interface conditions has
been introduced. This method avoids any floating sub-domains and guarantees the well-posedness
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properties of all the subproblems by using real absorbing interface conditions in place of the
Neumann interface conditions defined in the classical FETI method. No procedure for the detection
of the rigid body motions are required anymore to compute the solution in these subproblems,
even for general mesh partitioning. The absorbing interface conditions considered in this paper
use zeroth-order and second-order partial differential operators defined on the interface. Due to the
property of the equation, only real coefficients are considered to design these absorbing interface
conditions. Several numerical results illustrate the robustness and the efficiency of the proposed
method equipped with these new interface conditions upon several parameters. The results seem
very promising in the case of heterogeneous media.
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